- (b) states 2 and 02 are the actual and stagnation states of the fluid leaving the diffuser. - (4) The velocity coefficient C_{ν} is defined: $$C_{\nu} = \frac{\text{Actual velocity at nozzle exit}}{\text{Velocity at nozzle exit with isentropic}}$$ flow and same exit pressure # REVIEW PROBLEMS #### PROBLEM 1 Determine the final equilibrium state in English units when 2 lbm of saturated liquid mercury at 1 psia is mixed with 4 lbm of mercury vapor at 1 psia and 1,400°F. During the process the pressure in the cylinder is kept constant and no energy is lost between the cylinder and mercury. Figure 34. (a) The control mass (b) The process representation #### SOLUTION Since the amount of liquid might change during the process, the liquid or only the vapor cannot be taken as the control mass. Instead, take the entire 6 lbm of mercury. By assumption, no energy transfer as heat occurs, but the volume is expected to change, resulting in an energy transfer as work. The only energy stored within the control mass is the internal energy of the mercury; the energy balance, made over the time for the process to take place, is therefore (Figures 34 and 35) $$W = \Delta U$$ energy increase in input energy storage where $\Delta U = U_2 - U_1$ The work calculation is made easy by the fact that the pressure is constant. When the piston moves an amount dx, the energy transfer as work from the environment to the control mass is $$dW = PAdx = -PdV.$$ Integrating, $$W = \int_{1}^{2} -PdV = P(V_{1} - V_{2}).$$ Combining with the energy balance obtain $$U_2 + PV_2 = U_1 + PV_1 \tag{1}$$ | TABLE 3 | | | | | | | | |---------------------------------|--------|-----------|-------------------|-----------|--|--|--| | PROPERTIES OF SATURATED MERCURY | | | | | | | | | | | En | Enthalpy, Btu/Ibm | | | | | | P, psia | T,°F | Sat. liq. | Evap. | Sat. vap. | | | | | 0.010 | 233.57 | 6.668 | 127.732 | 134.400 | | | | | 0.020 | 259.88 | 7.532 | 127.614 | 135.146 | | | | | 0.030 | 276.22 | 8.068 | 127.540 | 135.608 | | | | | 0.050 | 297.97 | 8.778 | 127.442 | 136.220 | | | | | 0.100 | 329.73 | 9.814 | 127.300 | 137.114 | | | | | | | | | | | | | | 0.200 | 364.25 | 10.936 | 127.144 | 138.080 | | | | | 0.300 | 385.92 | 11.639 | 127.047 | 138.086 | | | | | 0.400 | 401.98 | 12.159 | 126.975 | 139.134 | | | | | 0.500 | 415.00 | 12.568 | 126.916 | 139.484 | | | | | 0.600 | 425.82 | 12.929 | 126.868 | 139.797 | | | | | | | | | | | | | | 0.800 | 443.50 | 13.500 | 126.788 | 140.288 | | | | | 1.00 | 457.72 | 13.959 | 126.724 | 140.683 | | | | | 2.00 | 504.93 | 15.476 | 126.512 | 141.988 | | | | | 3.00 | 535.25 | 16.439 | 126.377 | 142.816 | | | | | 5.00 | 575.70 | 17.741 | 126.193 | 143.934 | | | | Figure 35. Thermodynamic properties of mercury To evaluate the initial terms assume that the liquid is in an equilibrium state and the vapor is in an equilibrium state, even though they are not in equilibrium with one another. The graphical and tabular equations of state, Figure 35 and Table 3 for the thermodynamic properties of saturated mercury, may then be employed for each phase. Since the available equation-of-state information is in terms of the enthalpy property, express the right-hand side of equation (1) as $$\begin{split} U_1 + PV_1 &= M_{l_1} u_{l_1} + M_{\nu_1} u_{\nu_1} + P \Big(M_{l_1} v_{l_1} + M_{\nu_1} v_{\nu_1} \Big) \\ &= M_{l_1} h_{l_1} + M_{\nu_1} h_{\nu_1} \end{split}$$ Now, from the tables, the initial liquid enthalpy is (saturated liquid at 1 psia) $$h_{l_1} = 13.96 \text{ Btu/lbm}$$ $T_1 = 457.7^{\circ}\text{F}$ The initial vapor enthalpy is found from Figure 35 as $$h_{\nu_1} = 164 \text{ Btu/lbm}.$$ Substituting the numbers, $$U_1 + PV_1 = 2 \times 13.96 + 4 \times 164 = 684$$ Btu. The final state is a state of equilibrium, for which $$U_2 + PV_2 = M(u + Pv)_2 = Mh_2.$$ The enthalpy in the final state is therefore $$h_2 = \frac{684 \text{ Btu}}{6 \text{ lbm}} = 114 \text{ Btu / lbm}.$$ The final pressure and enthalpy may be used to fix the final state. Upon inspection of Figure 35, the final state is a mixture of saturated liquid and vapor at 1 psia and the "moisture" (1-x) is about 21 percent (0.79 quality). Alternatively, the information in Table 1, could have been used. $$114 = (1 - x_2) \times 13.96 + x_2 \times 140.7$$ $$x_2 = 0.79$$ #### PROBLEM 2 The gauge pressure in an automobile tire when measured during winter at 32°F was 30 N/m². The same tire was used during the summer, and and $$Q = 0.5(2,804.8 - 1,444.6) + 91.0 = 771.1 \text{ kJ}$$ #### **PROBLEM 4** Steam at 3 MPa, 300°C leaves the boiler and enters the high-pressure turbine (in a reheat cycle) and is expanded to 300 kPa. The steam is then reheated to 300°C and expanded in the second stage turbine to 10 kPA. What is the efficiency of the cycle if it is assumed to be internally reversible? Figure 36. Schematic of heating cycle Figure 37. T-s diagram for heating cycle #### SOLUTION The efficiency η can be obtained from the following equation: $$\eta = \frac{\dot{W}_{t_1} + \dot{W}_{t_2} - \dot{W}_p}{\dot{Q}_b - \dot{Q}_r} \tag{1}$$ To calculate W_{t_1} assume that the turbine is adiabatic and neglect kinetic and potential energy changes. Applying the first law to the turbine, $$\overset{\circ}{W_{t_1}} = \overset{\circ}{m} (h_2 - h_3).$$ From the steam tables, $$h_2 = 2,993.5 \text{ kJ/kg}$$ $s_2 = 6.5390 \text{ kJ/kg} - \text{K}$ To find h_3 for the internally reversible adiabatic process $2 \rightarrow 3$: $$s_2 = s_3 = 6.5390 \text{ kJ/kg} - \text{K}$$ At state 3, $$s_{f_3} = 1.6718 \text{ kJ/kg} - \text{K}$$ $h_{f_3} = 561.47 \text{ kJ/kg}$ $s_{fg_3} = 5.3201 \text{ kJ/kg} - \text{K}$ $h_{fg_3} = 2,163.8 \text{ kJ/kg}$ $s_{g_3} = 6.9919 \text{ kJ/kg} - \text{K}$ $h_{g_3} = 2,725.3 \text{ kJ/kg}$ $s_2 = s_3 = s_{f_3} + x_3 s_{fg_3}$ $6.5390 = 1.6718 + x_3(5.3201)$ $x_3 = 0.915$ $h_3 = h_{f_3} + x_3 h_{fg_3}$ $= 561.47 + 0.915(2,163.8)$ $= 2,542 \text{ kJ/kg}$ $$\frac{W_{t_1}}{h} = h_2 - h_3$$ $$m$$ $$= 2.993.5 - 2542$$ =452 kJ/kg Similarly, to find $\hat{W_{t_2}}$ $$\overset{\bullet}{W_{t_2}} = \overset{\bullet}{m} (h_4 - h_5)$$ From the steam tables, $$h_4 = 3,069.3 \text{ kJ/kg}$$ $s_4 = 7.7022 \text{ kJ/kg} - \text{K}$ To find h_5 , note that $$s_4 = s_5$$ At state 5, $$s_{f_5} = 0.6493 \text{ kJ/kg} - \text{K}$$ $h_{f_5} = 191.83 \text{ kJ/kg}$ $s_{fg_5} = 7.5009 \text{ kJ/kg} - \text{K}$ $h_{fg_5} = 2,392.8 \text{ kJ/kg}$ $s_{g_5} = 8.1502 \text{ kJ/kg} - \text{K}$ $h_{g_5} = 2,584.7 \text{ kJ/kg}$ $s_4 = s_5 = s_{f_5} + s_5 s_{fg_5}$ $s_5 = 0.949$ $s_5 = 0.949$ $s_5 = 0.949$ $s_5 = 0.949$ $s_6 = 0.949$ $s_7 $s_$ To obtain W_p , assume that $W_p = m v_6 (p_1 - p_6)$. From the steam tables, $$v_6 = v_{f_6}$$ = 1.0102 × 10⁻³ m³/kg Thus, $$\frac{W_p}{m}$$ = 1.0102(30 - 0.1)10⁵ × 10⁻⁶ = 3.0 kj/kg To obtain $\hat{Q_b}$, use $$Q_b = m(h_2 - h_1)$$ $h_1 = h_6 + \frac{W_p}{m}$ $= 191.8 + 3.0$ $= 194.8 \text{ kJ/kg}$ $\frac{Q_b}{m} = 2,993.5 - 194.8$ $m = 2,799 \text{ kJ/kg}$ To find \hat{Q}_r , From equation (1) then $$\eta = \frac{452 + 606 - 3}{2,799 + 527}$$ $$= 0.317$$ #### PROBLEM 3 A container which has a volume of 0.1m^3 is fitted with a plunger enclosing 0.5 kg of steam at 0.4 MPa. Calculate the amount of heat transferred and the work done when the steam is heated to 300°C at constant pressure. #### SOLUTION For this system changes in kinetic and potential energy are not significant. Therefore, $$Q = m(u_2 - u_1) + W$$ $$W = \int_{1}^{2} P dV = P \int_{1}^{2} dV = P(V_2 - V_1) = m(P_2 v_2 - P_1 v_1)$$ Therefore, $$Q = m(u_2 - u_1) + m(P_2v_2 - P_1v_1) = m(h_2 - h_1)$$ $$v_1 = \frac{V_1}{m} = \frac{0.1}{0.5} = 0.2 = 0.001084 + x_1(0.4614)$$ $$x_1 = \frac{0.1989}{0.4614} = 0.4311$$ Then $$h_1 = h_f + x_1 h_{fg}$$ = 604.74 + 0.4311 × 2133.8 = 1,524.6 $$h_2 = 3,066.8$$ $$Q = 0.5(3,066.8 - 1,524.6) = 771.1 \text{ kJ}$$ $$W = mP(v_2 - v_1) = 0.5 \times 400(0.6548 - 0.2)$$ = 91.0 kJ Therefore, $$U_2 - U_1 = Q - W = 771.1 - 91.0 = 680.1 \text{ kJ}.$$ The heat transfer can be calculated from u_1 and u_2 by using $$Q = m(u_2 - u_1) + W$$ $$u_1 = u_f + x_1 u_{fg}$$ $$= 604.31 + 0.4311 \times 1,949.3 = 1,444.6$$ $$u_2 = 2,804.8$$ #### **PROBLEM 5** Steam leaves the boiler in a steam turbine plant at 2 MPa, 300°C and is expanded to 3.5 kPa before entering the condenser. Compare the following four cycles: - (1) A superheated Rankine cycle. - (2) A reheat cycle, with steam reheated to 300°C at the pressure when it becomes saturated vapor. - (3) A regenerative cycle, with an open feedwater heater operating at the pressure where steam becomes saturated vapor. - (4) A regenerative cycle, with a closed feedwater heater operating at the pressure where steam becomes saturated vapor. Figure 38. Rankine cycle #### SOLUTION (1) Referring to Figure 38, the steam tables show that $$h_4 = 3,025 \text{ kJ/kg}$$ $s_4 = 6.768 \text{ kJ/kg} - \text{K}$ At $$P = 3.5$$ kPa, $$s_g = 8.521 \text{ kJ/kg} - \text{K}$$ $s_f = 0.391 \text{ kJ/kg} - \text{K}$ Since $s_5 = s_4$, steam at 5 is a mixture of liquid and vapor. The quality is found as $$x_5 = \frac{s_5 - s_f}{s_{fg}}$$ $$= \frac{6.768 - 0.391}{8.130}$$ $$= 0.785$$ Therefore, $$h_5 = h_f + x_5 h_{fg}$$ = 112 + 0.785(2,438) = 2,023 kJ/kg hence $$w_{45} = h_4 - h_5$$ = 3,025 - 2,023 = 1,002 kJ/kg Now $$w_{12} = h_1 - h_2$$ = $v_f(p_1 - p_2)$ = 0.0010(0.0035 - 2) × 10³ kJ/kg = -2 kJ/kg Therefore, the net work output is $$w = w_{45} + w_{12} = 1,000 \text{ kJ/kg}$$ Heat input is $$q_{42} = h_4 - h_2$$ But $$h_2 = h_1 - w_{12} = 112 + 2 = 114 \text{ kJ/kg}$$ therefore, $$q_{42} = 3,025 - 114 = 2,911 \text{ kJ/kg}$$ Thus, $$\eta = \frac{w}{q_{42}} = \frac{1,000}{2,911} = 0.344$$ Also Specific Steam Consumption = $$\frac{3,600}{w} = \frac{3,600}{1,000} = 3.6 \text{ kg/kWh}$$ Figure 39. Reheat cycle (2) Refer to Figure 39, and note that since $$s_5 = s_{sat} = s_4 = 6.768 \text{ kJ/kg} - \text{K}$$ the pressure at reheat point 5 can be found using the steam tables. Interpolating between 0.55 MPa and 0.6 MPa gives $$P_5 = 0.588 \text{ MPa}.$$ Then $$h_5 = 2,753 + \frac{0.588 - 0.55}{0.60 - 0.55} (2,757 - 2,753)$$ $$= 2,753 + \frac{0.038}{0.05} \times 4$$ $$= 2,756 \text{ kJ/kg}$$ As 6 and 5 are on the same isobar, by interpolation $$h_6 = 3,065 + \frac{0.588 - 0.5}{0.60 - 0.5}(3,062 - 3,065)$$ $$= 3,065 + \frac{0.088}{0.1}(-3)$$ $$= 3,062.4 \text{ kJ/kg}$$ $$s_6 = 7.460 + 0.88(7.373 - 7.460)$$ $$= 7.460 + 0.88(-0.087)$$ $$= 7.384 \text{ kJ/kg} - \text{K}$$ At P = 3.5 kPa, $$s_g = 8.521 \text{ kJ/kg} - \text{K}$$ $s_f = 0.391 \text{ kJ/kg} - \text{K}$ Since $s_7 = s_6$, the quality at 7 is found as $$x_7 = \frac{7.384 - 0.391}{8.130} = 0.86.$$ Then $$h_7 = 112 + 0.86(2,438)$$ =112 + 2,095 = 2,207 kJ/kg The net work output is given by $$w = w_{45} + w_{67} + w_{12}$$ = (3,025 - 2,765) + (3,062.4 - 2,207) - 2 = 1,122.4 The heat input is $$q = q_{42} + q_{65}$$ $$= 2,911 + (h_6 - h_5)$$ $$= 2,911 + (3,062.4 - 2,756)$$ $$= 3,217.4$$ Therefore, $$\eta = \frac{1,122.4}{3,217.4} = 0.349$$ and s.s.c. = $$\frac{3,600}{w} = \frac{3,600}{1,122.4} = 3.2 \text{ kg/kWh}.$$ Figure 40. (a) Equipment schematic for regenerative cycle Figure 40. (b) Regenerative cycle (3) Refer to Figures 40 (a) and 40 (b). The work is as in (b) $$w_{45} = 269 \text{ kJ/kg}$$ Next determine the amount of steam bled off at 5. Consider an energy balance for the open feedwater heater with $$h_{2'} = yh_s - (1 - y)h_2$$ which gives $$y = \frac{h_{2'} - h_2}{h_5 - h_2}$$ To find the value for h_{2} , enter the steam tables. At 5 the pressure is known (P = 0.588 MPa) and the state of the steam is given as saturated vapor. Therefore, by interpolating between the values of 0.5 MPa and 0.6 MPa, obtain $$h_{2'} = 656 + \frac{0.588 - 0.55}{0.60 - 0.55} (670 - 656)$$ $$= 656 + \frac{0.038}{0.05} \times 14$$ $$= 666.6 \text{ kJ/kg}$$ Then $$y = \frac{666.6 - 114}{2,756 - 114}$$ $$= \frac{552.6}{2,642}$$ $$= 0.209$$ Hence, $$w_{56} = (1 - y)(h_5 - h_6)$$ = 0.791(2,756 - 2,023) = 580 kJ/kg also $$w_{2'2''} = v_f (P_{2'} - P_{2''})$$ = 0.0011(0.588 - 2) × 10³ = -1.1 × 1.412 = -1.55 kJ/kg Therefore, $$w = w_{45} + w_{56} + w_{12} + w_{2'2''}$$ = 269 + 580 - 0.791 × 2 - 1.55 = 845.87 kJ/kg The heat input is $$q_{42"} = 3,025 - (666.6 + 1.55)$$ = 2,356.8 kJ/kg The efficiency of this cycle is $$\eta = \frac{w}{q_{42"}} = \frac{845.87}{2,356.8} = 0.3595$$ and s.s.c. = $$\frac{3,600}{w} = \frac{3,600}{845.9} = 4.25 \text{ kg/k Wh.}$$ Figure 41. (a) Equipment diagram including closed heater Figure 41. (b) A regenerative cycle with closed heater (4) Refer to Figures 41 (a) and 41 (b). The work is as in part (b). $$w_{45} = 269 \text{ kJ/kg}$$ Heat balance for the heater as a closed system gives $$h_{21} = yh_5 - (1 - y)h_2$$ giving $$y = \frac{h_{11} - h_2}{h_5 - h_9}$$ Now in finding the enthalpies in the feed line, it is usual to make the following assumptions: - i. Neglect the feed pump term. - ii. Assume the enthalpy of the compressed liquid to be the same as that of the saturated liquid at the same temperature. - iii. Assume the states of the condensate extracted from the turbine, before and after throttling, to be the same as that of the saturated liquid at the lower pressure of the throttled liquid. Using these assumptions $$h_2 = h_1$$ $h_{11} = h_8$ $h_9 = h_{10} = h_1$ whence $$y = \frac{h_8 - h_1}{h_5 - h_1}$$ $$= \frac{666.6 - 112}{2,756 - 112} = 0.209 \text{ kJ/kg}$$ Also, $$w_{56} = 580 \text{ kJ/kg}.$$ Therefore, $$w = w_{45} + w_{56} + w_{12}$$ = 269 + 580 - 2 = 847 kJ/kg Heat input $q_{411} = 2,358.4 \text{ kJ/kg}$. Then $$\eta = \frac{w}{q_{411}} = \frac{847}{2,358.4} = 0.360$$ and s.s.c. = $$\frac{3,600}{w} = \frac{3,600}{847} = 4.25 \text{ kg/k}$$ Wh. #### PROBLEM 6 - (1) One kilogram of air at 101.35 kPa, 21°C is compressed in an Otto cycle with a compression ratio of 7 to 1. During the combustion process, 953.66 kJ of heat is added to the air. Compute (a) the specific volume, pressure, and temperature at the four points in the cycle, (b) the air standard efficiency, and (c) the mep (mean effective pressure) and hp of the engine, if it uses 1 kg/min of air. - (2) Calculate the efficiency for a Carnot cycle operating between the maximum and minimum temperatures of the Otto cycle (Figure 42). Figure 42. Otto cycle #### SOLUTION (1) (a) At state 1, $$P_1 = 101.35 \text{ kPa}$$ $T_1 = 294 \text{K}$ # Fall 2007 Exam #Z, Problem #3 10/14/2007 P B A V $$V_{A}/V_{B} = 8$$ $$P_{A} = 100 \text{ kPa}$$ $$Q_{BC} = +800 \text{ kJ/kg}$$ $$C_{P} = 7/2 \text{ R}$$ AB: reversible, adiabatio BC: 180 charic co: reversible, adiabatic DA: isochoric | (| T (K) | P(kPa) | |---|-------|--------| | A | 290 | 100 | | B | 662 | 1838 | | С | 1782 | 4918 | | D | 776 | 268 | $$\frac{dS^{\circ}}{dt} = \sum_{i} i n_{i} s_{i} \hat{s}_{k} + \hat{Z}^{\circ} + S_{gen}$$ $$\hat{S}_{A} = \hat{S}_{B}$$ $$\hat{S}(P, V) = O = Cp \ln \frac{VB}{VA} + Cv \ln \frac{PB}{PA}$$ $$P_{B}/\rho_{A} = \left(\frac{V_{A}}{V_{B}}\right)^{C}\rho/cV$$ $$P_{B} = P_{A}\left(8\right)^{7/2}\sqrt{5}\sqrt{2}R$$ $$= 100\left(8\right)^{7/5}$$ Also, $$\Delta \hat{S}(T, Y) = 0 \implies T_{B} = \left(\frac{Y_{A}(C_{P}-C_{V})}{Y_{B}}\right)$$ $$T_{B} = (290 \text{ K})(8)^{(7/5-1)}$$ Balance from $$B \rightarrow C$$ $$\frac{dl}{dt} = \sum_{i} \frac{\dot{A}_{i} u_{i}}{\dot{A}_{i} u_{i}} + \dot{Q} + \dot{Q}^{\circ}$$ $$\dot{m}(\ddot{U}_{c} - \ddot{U}_{B}) = \dot{Q}$$ $$\dot{Q} = \dot{U}_{c} - \dot{U}_{B} = c_{v}(\tau_{c} - \tau_{B})$$ $$T_{c} = \frac{9}{\text{MCV}} + T_{B}$$ $$= \frac{800 \text{ kJ/kg}}{(5/2)(8.314 \text{ J/MJ/k})} \frac{\text{Kg}}{10008} \frac{10008}{1500g} + 666.2 \text{ k}$$ $$\frac{P_{C} V_{C}}{T_{C}} = \frac{P_{B} V_{B}}{T_{B}}$$ $$P_{C} = \frac{P_{B} V_{B}}{T_{B}} \left(\frac{V_{C}}{T_{B}}\right) \left(\frac{V_{C}}{V_{C}}\right)^{1} \left(\frac{150 \text{ chev.ic}}{150 \text{ chev.ic}}\right)$$ $$P_{c} = (1838 \text{ KPa}) \left(\frac{1782.4}{666.2} \right)$$ As before during adiatic compression $$P_{D}/\rho_{C} = \left(\frac{V_{C}}{V_{D}}\right)^{c}\rho_{C}$$ $$\frac{1}{T_{C}} = \left(\frac{Y_{C}}{Y_{D}} \left(\frac{C_{p} - C_{v}}{C_{v}} \right) \right)$$ $$V_B = V_c$$ $$P_{D} = P_{C} \left(\frac{V_{B}}{V_{A}} \right)^{C_{P}/C_{V}}$$ $$T_{D} = T_{C} \left(\frac{V_{B}}{Y_{A}} \right) \left(\frac{c_{D} - c_{v}}{c_{v}} \right)$$ $$= 1782.4 \left(\frac{1}{8} \right) \left(\frac{7/5 - 1}{8} \right)$$ $$T_{D} = 775.8K$$ Overall Belance Balance around last isochoric δ tep $\frac{du}{dt} = \sum_{i} \hat{n}_{i} \hat{u}_{i} + \hat{Q}_{out} + \hat{Q}_{out}$ $\hat{n}(\hat{u}_{A} - \hat{u}_{0}) = \hat{Q}_{out}$ $$\frac{\hat{Q}_{out}}{\hat{m}} = \frac{5}{2} \left(\frac{8.314 \text{ M/mol.K}}{\text{Mol.K}} \right) \frac{1000 \text{ Most}}{\text{Kg}} \left(\frac{290 - 775.8}{290 \text{ Most}} \right)$$ $$-W_{\text{Not}} = 800 - 348.2$$ $$\frac{-W_{net}}{Q_{in}} = \frac{451.8}{800} = 7 \quad 1 = 0.565$$ # **Process Thermodynamics** # First Law Example 1 A gas is confined in a cylinder by a piston. It is taken from state A to state B along the path ACB as shown on the PV diagram below. The process from A to C is constant pressure, and the system receives 50 J of work and gives up 25 J of heat to the surroundings. The process from C to B is constant volume and the system receives 75 J of heat. The return path from B to A is adiabatic. How much work is exchanged with the surroundings for the adiabatic path? Assume all processes are reversible. Endianuss 3 System: gas in cylinder DU + SEP + SER = 9+W Known: PAC = 25J WAC = 50J $$Q_{BA} = 0$$ Assume reversible (detints to follow later in course) (1.1. frictionless) Ly W is a state function - we know that we can get same BU by following different taken $$\Delta U_{AC} = 9_{AC} + W_{AC}$$ $$= -25J + 50J$$ $$= 25J$$ $$\Delta U_{CB} = 9_{CB} + W_{CB}^{T^{\circ}}$$ $$= 75J + W_{CB}$$ $$= 0$$ $$\Delta U_{BA} = -\Delta U_{AC} - \Delta U_{CB}$$ = -25J - 75J = -100J # **Process Thermodynamics** # First Law Example 2 Water at 200 °F is pumped from a storage tank at the rate of 50 gal min⁻¹. The motor for the pump supplies work at the rate of 2 hp. The water goes through a heat exchanger, giving up heat at the rate of 40 000 Btu min⁻¹, and is delivered to a second storage tank at an elevation 50 ft above the first tank. What is the temperature of the water delivered to the second tank? The density of water at 200 °F is $60.1 \text{ lb}_m \text{ ft}^{-3}$. if u, ~o, then u, ~o Energy Baknee (survation if necessary) $$\delta \hat{H} + \frac{u_2^2 - u_1^2}{2} + g(z_2 - z_1) = g + u_3$$ $\delta \hat{H} = \hat{H_2} - \hat{H_1} = g + \omega_S - g \Delta Z$ When the property of liquid $\frac{1}{2} = \frac{1}{2} \frac{1$ From Steam tables, we see that Tz is between 100 of 102°F Interpolate to get Tz = 100.74°F Note that Ws & DEp ~ 0 in comparison to Q & could have been neglected more constants Air a 28.088 closer to (low rays) 6. $$0.197 \times 10^{-2}$$ Process Thermodynamics of c. 0.480×10^{-5} First Law Example 3 $C_p = \sqrt{1.965 \times 10^{-9}}$ Air at 1 bar and 298.15 K is compressed to 5 bar and 298.15 K by two different frictionless (reversible) processes: - (4) Cooling at constant pressure followed by heating at constant volume - (1) Heating at constant volume followed by cooling at constant pressure Calculate the heat and work requirements and the change in internal energy and enthalpy of the air for each path. Assume that air is an ideal gas, regardless of the changes it undergoes and that $C_p = C_v + R$. At 298.15 K and 1 bar the molar volume of air is $0.02479~\text{m}^3~\text{mol}^{-1}$. P Replace A Resume: Air Pa= 1 ber Pa= 5 ber Ta=Tc = 298/5 K V V(Ta,Pa) = 0.02479 m²/m1 Ws = 0 (wint) Assume: I mid (wait) DEp = DEk = 0 (losed System changing V AH + DEp + DER = $$Q + MS$$ (odd to known) AH = Q AH = Q AH = Q AH = Q The a + bT + cT² + dT³ = a(Tb-Ta) + b(Tb-Ta²) + C(Tb-Ta²) + C(Tb²-Ta²) We also know $$\frac{P_A V_A}{T_A} = \frac{P_C V_C}{T_C}$$ $$\frac{P_C V_C}{T_C}$$ $$\frac{P_A V_A}{T_C} = \frac{P_A V_A}{P_C}$$ Scond step — closed system at const. V (B->C) $$\Delta U_{BC} + \Delta E_{p}^{-1} + \Delta E_{k}^{-2} = Q + \Delta S^{-2} (cmst. v)$$ $$\Delta U_{BC} = Q_{BC} = \int_{T_{B}}^{T_{C}} C_{v} dT \qquad C_{v} = C_{p} - R$$ $$= \int_{T_{B}}^{T_{B}} C_{p} - R = (a-R)(T_{B}-T_{B}^{2}) + \frac{1}{2}(T_{C}^{2}-T_{B}^{2}) + \frac{1}{2}(T_{C}^{2}-T_{B}^{2})$$ $$= \int_{T_{B}}^{T_{B}} C_{p} - R = (a-R)(T_{C}-T_{B}^{2}) + \frac{1}{2}(T_{C}^{2}-T_{B}^{2})$$ $$= Q_{AB} + Q_{BC}$$ Overall Bolance * extensive properties are additive Recall that SU = f(T) for 19 $$Q_{AD} = \Delta U_{AD} = \int_{T_A}^{T_b} C_V dT$$ = $(\alpha - R) (T_b - T_a) + \frac{b}{2} (T_b^2 - T_a^2) + \frac{c}{3} (T_b^3 - T_a^3)$ + $\frac{d}{4} (T_b^4 - T_a^4)$ $$D \to C$$ $$Q_{DC} = bH_{DC} = \int_{T_{D}}^{T_{C}} C_{P} dT$$ $$= a(T_{C} - T_{D}) + \frac{1}{2}(T_{C}^{2} - T_{D}^{2}) + \frac{1}{3}(T_{C}^{2} - T_{D}^{2})$$ $$+ \frac{1}{4}(T_{C}^{4} - T_{D}^{4})$$ $$\frac{\partial U_{Dc}}{\partial v_{Dc}} = \frac{\partial v_{Dc}}{\partial v_{Dc}} - \frac{\partial$$ # Entire Process $$Q_T = Q_{AB} + Q_{DC}$$ $$\delta N_T = \Delta U_{AB} + \Delta U_{DC}$$ $$\Delta H_T = \Delta H_{AB} + \Delta H_{DC}$$ # Overall Balance $$\Delta u = \varphi + \omega$$ $\omega = -Q$ Final Values $$\Delta H_{NC} = Q_{DC} = -38,435 \text{ J}$$ $\Delta U_{DC} = 28,520 \text{ J}$ $\Delta U_{DC} = 28,520 \text{ J}$ $\Delta U_{AD} = \Delta U_{AD} = 28,520 \text{ J}$ $\Delta U_{T} = -995 \text{ J}$ $\Delta U_{T} = \Delta H_{T} = 0$ $\omega = 995 \text{ J}$ Note that the property changes DU \$ DH are the some for both paths, but Q\$ W are path - dependent # **Process Thermodynamics** First Law Example 4 Hed to derity & Stee A well-insulated storage tank of 60 m3 contains 200 L of liquid water at 75 °C. The rest of the tank contains steam in equilibrium with the water. Spent process steam at 2 bar and 90% quality enters the storage tank until the pressure in the tank reaches 2 bar. Assuming that the heat losses from the system to the tank and the environment are negligible, calculate the total amount of steam that enters the tank during the filling process and the fraction of liquid water present at the end of the process. $$V = 60 \text{ m}^3$$ $$V = 60 \text{ m}^3$$ $$V_L^i = 200L$$ $$V = 75 \text{ c}$$ $$Sat.$$ $$\hat{V}_{i}^{i} = (1026 \times 10^{-3} \text{ m}^{3})_{kg}$$ $\hat{V}_{v}^{i} = 4.131 \text{ m}^{3}/_{kg}$ $\hat{V}_{v}^{i} = 313.9 \text{ kJ/kg}$ $\hat{U}_{v}^{i} = 2475.9 \text{ kJ/kg}$ $$V = 60 \text{ m}^{3}$$ $$V = 60 \text{ m}^{3}$$ $$V = 200L$$ $$V_{i} = 200L$$ $$V_{i} = 75^{\circ}\text{C}$$ $$V_{i} = 75^{\circ}\text{C}$$ $$V_{i} = 1026 \times 10^{3} \text{ m}^{3}\text{kg}$$ $$V_{i} = 1061 \times 10^{3} \text{ m}^{3}\text{kg}$$ $$V_{i} = 4.131 \text{ m}^{3}\text{kg}$$ $$V_{i} = 313.9 \text{ kJ/kg}$$ $$\hat{U}_{i} = 2475.9 \text{ kJ/kg}$$ $$\hat{U}_{i} = 2529.5 \text{ kJ/kg}$$ $$\hat{U}_{i} = 27067 \text{ kJ/kg}$$ $$\hat{U}_{i} = 27067 \text{ kJ/kg}$$ Hv, ic = 2706.7 Kg/kg Mf - Mi = (1m) total mass of steam introduced $$M_L^L + m_V^i = m^L$$ $$m_{L}^{i} = \frac{V_{L}^{i}}{\hat{V}_{L}^{i}} = \frac{200L}{1.026\times10^{-3} \,\mathrm{M}^{3}/\mathrm{kg}} \cdot \left(\frac{\mathrm{M}^{3}}{1000L}\right) = 194.932 \,\mathrm{kg}$$ $$M_{V}^{i} = \frac{V_{V}^{i}}{V_{V}^{i}} = \frac{60 \, \text{m}^{3} - 200 \, \text{L} \left(\frac{\text{m}^{3}}{1000 \, \text{L}}\right)}{4.131 \, \text{m}^{3}/\text{kg}} = 14.476 \, \text{kg}$$ - Energy Balance wo DEA & DER da = min(Hin) + 5 + 300 integrate from initial to final conditions (f du = (min findt min (t) uf-ui = (mf-mi) fin (2) the militaries Uf = mfûf (sub into (2)) .. mf ûf - m i û = (mf - m i) flin (3)for 2-phase mixture $\Theta = X^{I}\Theta^{I} + X^{I}\Theta^{I}$ Use lever rule, $M\hat{U} = M_L\hat{U}_L + M_V\hat{U}_V$ (sub into (3)) (mifut + mfuv) - (micui + miuv) = (mf-mi) flin Hin = 0.1 HL, in + 0.9 HV, in Analyze & Get variables mf=m,f+m,f We have one eg & two variables — can we solve? Do we know anything elseabout the final mass. (5) $$V = m_L^f \hat{V_L}^f + m_V^f \hat{V_V}^f$$ (5 Now solve (4) \$ (5) Simultaneously $$504.49 \text{ m}_{i}^{f} + 2529.5 \text{ m}_{v}^{f} - 97030.3 = \left(m_{i}^{f} + m_{v}^{f} - 209.41\right) 2486.5$$ (4) $9852.7 = 46.1 \text{ m}_{i}^{f} - m_{v}^{f}$ (4) Note: All the state of $$|M_{\nu}f| = 215.19 \text{ kg}$$ $\Delta M = 73.48 \text{ kg}$ $\chi_{L} = \frac{m_{\nu}f}{m_{\nu}f + m_{\nu}f} = 0.761$ ### **Process Thermodynamics** # Engine Efficiency Example 1 A central power plant, rated at 800,000 kW, generates steam at 585 K and discards heat to a river at 295 K. If the thermal efficiency of the plant is 70% of the maximum possible value, how much heat is discarded to the river at rated power? max efficiency given by $$\eta = -\frac{W}{Q_H} = 1 - \frac{T_C}{T_H}$$ $\eta = 0.7 \eta_{\text{max}} = 0.347$ Energy Bal $\eta = -\frac{W}{Q_H}$ $\eta = -\frac{W}{Q_H}$ $\eta = -\frac{W}{Q_H}$ $\eta = -\frac{W}{Q_H}$ Engine Efficiency Example 2 The following heat engines produce power of 95,000 kW. Determine in each case the rates at which heat is absorbed from the hot reservoir and discarded to the cold reservoir. - 1. A Carnot engine operates between heat reservoirs at 750 K and 300 K. - 2. A practical engine operates between the same heat reservoirs but with a thermal efficiency $\eta = 0.35$. 1. $$N = 1 - \frac{T_{c}}{T_{H}} = 1 - \frac{300}{750}$$ $N = \frac{-\omega}{Q_{H}}$ $N = \frac{95780 \text{ kW}}{0.6}$ $Q_{c} + Q_{H} + W = 0$ $Q_{c} = -\frac{1.583 \times 10^{5} \text{ kW}}{0.6}$ $Q_{c} = -\frac{1.583 \times 10^{5} \text{ kW}}{0.6}$ 2. $$\eta = 0.35$$ $$Q_{H} = -\frac{W}{\gamma}$$ $$= \frac{95000}{0.35}$$ $$Q_{H} = 2.71 \times 10^{5} \text{ kW}$$ ### **Process Thermodynamics** # Power Cycles Example 1 Steam generated in a power plant at a pressure of 8000 kPa and a temperature of 500 °C is fed to a turbine. Exhaust from the turbine enters a condenser at 10 kPa, where it is condensed to saturated liquid, which is then pumped to the boiler. - a) What is the thermal efficiency of a Rankine cycle operating at these conditions? - b) What is the thermal efficiency of a practical cycle operating at these conditions if the turbine efficiency and pump efficiency are both 0.75? - c) If the rating of the power cycle of part (b) is 80,000 kW, what is the steam rate and what are the heat-transfer rates in the boiler and condenser? |) | | WT /tu | W _p | | | |---|-------|-------------------------|-------------------------|---|--------------------------| | | 2 3 4 | 500°C
45.81
45.81 | P POODERA 10KPA 10KPA | - | \$ (KJ/kg.K) 6.724 6.724 | We can get \hat{H}_i & \hat{S}_i , from Steam tables (Values in table) Entropy Bal around furbine Line Line Line Line Lessible Lessi From steam tables of 10 kPa, it is seen that sat upon too high of 5 = ? .. must be mixture $\hat{S}_{2}^{L} = 0.6493$ S2 = (1-x)S2+ x S2V S, v = 8.1502 = \$2 - x \$2 + x \$2,0 = Sz+ x (Szv-Sz+) solve for x = 0.80 H2 = (1-x) H2 + x H2 V Ĥ, = 2584.7 H2 = 191.83 Hz = 2130.1 (Part Îte în table) Read T from table (Put T2 = 45.81°C in table) We know condenser isobario (P3 = 10 KPa) : 1 = 13 = 45.81°C (Pool 73 in table) Calculate work of turbine du = Simphe + S+ wis WT = m (Hz-4) $\frac{\omega_T}{\dot{m}} = \hat{H}_2 - \hat{H}_1 = -1268.2 \text{ KJ/kg}$ We know condenser 150 baric (Pg = 10 KPa) Because it is sat. Inquid $\hat{H}_3 = \hat{H}_3 = 191.83$ (Pat \hat{H}_3 in table) Energy Bul around condenser, du = Sima Hn + 9c+12 $$\hat{Q}_{e} = \hat{m} (\hat{H}_{3} - \hat{H}_{2})$$ $$\hat{Q}_{e} = \hat{H}_{3} - \hat{H}_{2}$$ $$= -193 \, \text{R.} 3 \, \text{KJ/kg}$$ $$Pump is isentropic (\hat{S}_{3} = \hat{S}_{4})$$ $$\hat{d}\hat{d}^{\circ} = \sum_{i} \hat{m}_{b} \hat{H}_{a} + \hat{p}^{\circ} + \hat{\omega}_{p} - \int_{p} \hat{d}\hat{v}$$ $$\hat{u}_{p} = \hat{u} \hat{H}_{4} - \hat{H}_{3}$$ We need to get Hy - Recall that typically we would solve entropy balance LOS is isentropic the No info get you would get you would get you would get the pressure that you couldn't be need to relate by in terms of pressure that you couldn't have the ble get hre know intend energy should increase hre know industrial pdV relates S to PdV K= U+PV or dH = du + PdV + Vdp combine dH = TdS + Vdp $\frac{\dot{w}_{p}}{\dot{m}} = \int \hat{V} dp$ $= \hat{V} / D = P$ $= \hat{V}(P_4 - P_3)$ Gret V from Steam tables VL = 1.01 ×10-3 m3/kg 1 = -Ws = +1260.1 KJ/kg = 0.394 | 3198.4 KJ/kg = 0.394 (b) $$\sqrt{T} = M_P = 0.75$$ $$\sqrt{T} = \frac{W_S}{W_S(isantripic)} = \frac{\Delta \hat{H}}{(\Delta \hat{H})_S}$$ We see from steam tables that state 2 is also wet $\hat{H}'_2 = \hat{H}_2^L + \times (\hat{H}_2^V - \hat{H}_2^L)$ $$2447.2 = 191.83 + \times (2584.7 - 191.83)$$ $x = 0.94$ $$\hat{S}_{2} = \hat{S}_{2}^{L} + \times (\hat{S}_{2}^{V} - \hat{S}_{2}^{L})$$ $$= 7.7 \quad (\text{Pat in table})$$ $$S_{2} \stackrel{4}{+} T_{2}$$ $$\frac{\dot{W}_{T}}{\dot{m}} = \frac{\hat{H}_{2}' - \hat{H}_{1}}{-951.1 \, \text{kJ/kg}}$$ $$\frac{\dot{q}_c}{\dot{m}} = \dot{H}_3 - \dot{H}_2'$$ = 191.83 - 2447.2 = - 2255.4 $$Q_{H} = \hat{H}, -\hat{H}_{Y} = 339.5.3 - 202.59$$ $$1 = -\frac{\omega_s}{\rho_H} = \frac{940.3}{3195.71} = 0.294$$ $$\hat{m} = \frac{\hat{\omega}_s}{\omega_s}$$